Background
Burnout is a syndrome referred to as an “occupational phenomenon” despite lacking a single definition [
1,
2]. Maslach and Jackson categorized burnout into three components: emotional exhaustion, depersonalization, and low feelings of personal accomplishment, which refers to a sense of competence and successful achievement in one’s work [
3]. Numerous studies have demonstrated that burnout affects various healthcare professionals [
4‐
6], negatively impacting their physical and mental well-being. Adverse effects may include stress-related syndromes or illnesses such as depression, anxiety, perceived memory impairment, diabetes, and metabolic syndrome [
7]. Medical errors, decreased productivity, early retirement, and a compromised work-life balance are common consequences of these negative impacts [
8‐
10]. Given its prevalence and potential detrimental effects, understanding the underlying causes of burnout is crucial.
Personality traits have been found to contribute to the development of burnout [
11]. Numerous studies conducted in the past decade have emphasized the importance of psychological factors and identified specific personality traits that either facilitate or act as barriers to the development of burnout [
12]. More recently, researchers have utilized the five-factor model of personality traits, commonly known as the “Big Five” to explore the relationship between personality and burnout [
13]. The Five Factor Theory, which breaks down personality into five fundamental components, is a widely accepted framework for measuring traits. The “Big Five” personality traits consist of Neuroticism (degree of emotional instability), Extraversion (degree of sociability and liveliness), Agreeableness (degree of interpersonal tendencies to approach or reject others), Conscientiousness (degree of self-control and self-determination), and Openness (degree of intellectual curiosity and aesthetic sensibility) [
14].
Most of the reviewed studies indicate that individuals with higher levels of Neuroticism and lower levels of Extraversion, Agreeableness, Conscientiousness, and Openness are more prone to burnout [
15]. Neuroticism, in particular, may contribute to burnout due to difficulties in managing emotions and impulses. Neurotic individuals commonly experience insecurity, anxiety, anger, and depressive symptoms [
16], which hinder their ability to perform job tasks satisfactorily and act as an amplifying “filter” for negative events [
17], thereby increasing the risk of burnout [
18]. On the other hand, Agreeableness, which enables warm interpersonal interactions, may have a protective effect against burnout, preventing individuals from experiencing depersonalization [
19]. While several studies have investigated the relationship between the Big Five personality traits and burnout, the results have been inconsistent. Although most studies have found a strong negative association between Openness and burnout, other studies have reported opposite correlations between Openness and the three dimensions of burnout [
20‐
22]. Furthermore, while certain studies have found a positive correlation between burnout and Extraversion, the reasons for this contradictory finding remain unexplained [
21]. Given these discrepancies, further clarification of the links between the Big Five personality traits and burnout is necessary.
In previous studies, the correlation between the Big Five personality traits and burnout has often been examined by categorizing burnout as a unitary concept or its three dimensions [
23‐
25]. However, this kind of approach may have an influence on overlooking the heterogeneity of burnout and mask the varying correlations between different components and personality traits, leading to inconsistent results. Previous research has demonstrated that burnout could be viewed as an interactive system comprising various components [
26,
27]. Recent studies utilizing a network model have identified specific psychological characteristics, such as mental well-being [
26] and depression [
28], that are specifically associated with individual burnout components. Therefore, adopting a component-based approach may provide a fresh perspective and enhance understanding of the relationships between the Big Five personality traits and burnout.
From the perspective of network, a psychological construct can be seen as a network of components (nodes) and the interactions (edges) between them [
29]. Depending on the strength of their direct connections (edge weights), nodes may either reinforce or inhibit each other in a network model incorporating the Big Five personality traits and burnout components. Network analysis offers a direct examination of the relationships between individual components and their predisposing factors, presenting an insightful visualization of these associations that traditional statistical models do not provide [
30‐
32]. By examining the network structure, researchers can gain a clear understanding of which Big Five personality traits are closely linked to each of the burnout components. Additionally, network analysis offers new metrics for assessing the potential effects of significant predisposing factors on component communities [
33]. For the community of burnout components, the bridge expected influence could specifically measure the extent to which each Big Five personality trait activates or deactivates the community, transmitting positive or negative effects [
33]. This knowledge could be crucial in identifying prospective personality targets for burnout prevention and intervention.
The present study utilizes network analysis to compare the Big Five personality traits with burnout at the trait-to-component level. Our objectives are to investigate: (1) the specific connections between the Big Five personality traits and burnout components, and (2) the bridging effects of each Big Five personality trait on the cluster of burnout components by examining the bridge expected influence of each trait. We hypothesize that Neuroticism will activate the community of burnout components, while Conscientiousness will deactivate it.
Discussion
The present study is the first to utilize a trait-to-component network approach to explore the connections between the Big Five personality traits and burnout components. In line with our initial objective, we uncovered several distinct between-community connections, both positive and negative, such as Neuroticism-Doubt significance (B8), Conscientiousness-Accomplish all tasks (B15), and Extraversion-Tired (B3). The strongest positive association was observed between Neuroticism and Doubt significance (B8). Our second objective and study hypotheses were supported by the results of bridge expected influence, which revealed that Conscientiousness and Extraversion deactivate the burnout components community while Neuroticism activates it. We also demonstrated that Agreeableness and Openness may deactivate the burnout components community.
The strongest positive edges between communities were observed between Neuroticism and Doubt significance (B8), while the second-strongest edges were found between Neuroticism and Worthwhile (B14). These two edges illustrate the association between Neuroticism and depersonalization, as well as low emotions of personal accomplishment. Neuroticism, characterized by worry, insecurity, depression, fear, and apprehension [
16,
46,
47], often leads individuals to employ avoidance and diversion as coping mechanisms [
48]. In demanding and highly competitive careers, such behavior is likely to result in higher levels of depersonalization and reduced personal accomplishment [
49,
50]. This finding is consistent with previous research on burnout among medical professionals [
50‐
52]. Most connections between Conscientiousness and burnout, such as those between Conscientiousness and Accomplish all tasks (B15) and Worthwhile (B14), were found to be negative. Conscientious individuals, known for their ability to manage and organize their work and time, are adept at employing efficient coping mechanisms that keep their focus on problem-solving in stressful situations [
14]. This argument aligns with earlier research suggesting that Conscientiousness facilitates individuals’ perception of professional efficacy [
53]. We also discovered an intriguing positive link between Conscientiousness and Indifferent (B9). This relationship may be attributed to the occupational peculiarities of medical staff; under increased pressure resulting from deteriorating doctor-patient relationships, medical staff may view it as their duty to provide for patients while avoiding excessive emotional involvement. Nevertheless, further investigations are needed to provide a more detailed explanation for this finding. Furthermore, the final network structure revealed that the majority of components in the burnout community were positively connected. Three edges with the highest weights within the burnout community were Emotionally drained-Used up (B1-B2), Contributing-Good at job (B11-B12), and Worthwhile-Accomplish all tasks (B14-B15). These results about strongest edges were similar to our previous studies on the network structure of burnout among medical staff and Chinese nurses [
26,
27].
The bridge centrality of nodes may shed light on the specific roles played by each of the Big Five personality traits in the context of burnout [
54,
55]. Nodes with higher bridge expected influence values are more likely to activate the burnout components community. Thus, from the perspective of the Big Five personality traits, this provides empirical evidence for early detection and intervention of medical staff burnout. Specifically, Neuroticism exhibits a high positive bridge expected influence value, suggesting that it effectively activates the burnout component community. This finding is consistent with a previous study that utilized network analysis to examine the bridging effects of each Big Five personality trait on the symptom community of problematic smartphone use and found that Neuroticism had the highest positive bridge centrality [
56]. Individuals with high levels of Neuroticism often experience heightened levels of stress, tend to magnify the seriousness of threats, and underestimate their own capabilities. On the other hand, Conscientiousness exhibits the highest negative value of bridge expected influence, indicating its potential to effectively deactivate the burnout components community. Bridge nodes have been identified as crucial intervention targets since addressing them could modify the co-occurring phenomenon of communities [
33]. Therefore, addressing medical staff burnout may involve reducing Neuroticism and enhancing Conscientiousness.
Limitations
Although the present study employs a novel component-based approach, namely network analysis, to explore the connections between the Big Five personality traits and burnout components among medical staff, there are several limitations that warrant consideration. Firstly, the theoretical foundation of this study assumes that personality characteristics can impact burnout, and the findings were interpreted in light of the potential predictive pathways between personality traits and burnout. However, due to the cross-sectional design employed in this study, we cannot completely exclude the possibility that the Big Five personality traits may have changed as a consequence of experiencing burnout symptoms. Secondly, if alternative measurement scales are utilized for assessing the components, it is uncertain whether the network structure established in this study, based on the questionnaires employed, can be replicated. Moreover, since the instrument employed relies on self-reporting, response bias is inevitable, although future research could incorporate additional objective measurement techniques. Finally, the current study’s sample size selection was informed by the work of Epskamp et al. (2018), which suggest a minimum sample size of 210 for a 20-node network analysis [
29]. Additionally, we calculated the CS-coefficient, adhering to recommended best practices for ensuring network stability. It’s important to note that while the CS-coefficient is optimal for this study, its determination was post hoc rather than a priori. Since our data collection, newer methodologies for a priori sample size estimation have emerged. Specifically, the method proposed by Constantin and colleagues indicates that a sample size of 3582 could achieve a sensitivity of 0.6 in 80% of cases [
57]. This larger sample size is recommended for future studies aiming to replicate our findings.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.