Background
Neck pain (NP) appears to be more prominent in the general population than previously considered[
1]. It affects up to 71% of individuals during their lifetime[
2], and general population studies indicate that between 30-50% of individuals will experience NP in any 12-month period (range: 12.1%-71.5%)[
3]. Furthermore, it is commonly recurrent, with over 50% of workers with NP reporting symptoms a year later[
4]. Economic analyses reveal that NP can place a considerable annual financial burden on society[
3,
5,
6]. In the Netherlands, sick leave due to neck pain (NP-SL) was reported to comprise over a quarter of the total NP financial burden, and costed an estimated US$185.4 million from 1.4 million days of lost productivity associated with worker absence[
5].
Given the societal, workforce and personal implications of NP-SL, the factors associated with NP-SL must be understood in order to inform preventive efforts. Exposures examined to date have predominated around pain characteristics and occupational, demographic and psychosocial factors with inconsistent results[
7‐
13]. In addition, there has been only one study of factors associated with NP-SL as an exclusive outcome[
13]. This analysis showed that work-related neck flexion and neck rotation, low decision authority and medium skill discretion were significantly related to NP-SL in industrial workers[
13]. All other studies have examined work absenteeism due to pain in composite regions that included the neck in combination with the shoulder, upper extremity and/or upper and lower back[
7‐
12]. Given that factors related to composite outcomes may differ to those related to NP-SL in isolation, analyses of sick leave due to pain in the neck region alone are needed to clarify exposure relationships.
The relationship between NP-SL and pain-related psychological features has never been investigated. Theoretical models posit that mal-adaptive pain-related cognitions and behaviours contribute to development of chronic pain[
14,
15]. Specifically, fear-avoidance theory asserts that catastrophizing about pain leads to pain-related fear (e.g. fear of movement) and avoidance/escape behaviours (e.g. passive pain coping) that lead to disability, disuse, and further pain[
14,
15]. Staying home from work is a potential proxy of avoidant behaviour, hence mal-adaptive pain-related features may play a role in explaining NP-SL. The demonstrated relationship between pain-related psychological features and sick leave due to low back pain[
16,
17] suggests these factors may be similarly related to NP-SL. Given that psychological features may be modifiable, and therefore ideal targets for preventive efforts, their role in NP-SL must be defined.
Utilizing a large occupational cohort of Australian and New Zealand nurses and midwives, the aim of this study was to determine the role of pain-related psychological factors (pain catastrophizing, fear of movement and pain coping) and other psychosocial, occupational, demographic and pain characteristics in explaining NP-SL. Under the Australian National Employment Standards, full-time employees are entitled to 10 days’ paid personal leave (for sick and paid carer’s leave) per year. Part-time employees receive a pro rata entitlement to sick leave based on the number of hours they work. In New Zealand there is a minimum provision of five days’ paid sick leave a year after the first six months of continuous employment and an additional five days’ sick leave after each subsequent 12-month period. Leave accumulates from year to year in both countries. The nursing population was targeted to answer our research questions since NP negatively impacts this profession. A population study of multiple occupational groups in Britain found that nurses reported the highest annual prevalence (15%) for NP that prevented normal activities[
18]. Further, workforce attrition studies show than nurses with neck/shoulder pain are 1.5 times more likely to leave nursing work[
19]. Hence, an understanding of the factors associated with NP-SL can inform professional policy and preventive programs to maximise the viable nursing workforce.
Discussion
The key objective of this study was to determine the differential role of pain-related cognitions and behaviours alongside other risk indicators in NP-SL. While many cases of sick leave due to incapacitating NP are likely to be appropriately exercised, fear-avoidance theory[
15] suggests there may also be cases where fearful cognitions about pain prohibit work attendance rather than actual functional limitation. It is this NP-SL that has the potential for prevention if relevant psychological factors are identified and targeted interventions developed. In a cohort of nurses and midwives with NP in the preceding year, we found pain severity, fear of movement and passive pain coping increased the likelihood of work absence. In addition, there were complex interactions found between demographic and general health factors.
The relationship between neck pain severity and NP-SL was expected. Pain severity has consistently shown a relationship with NP-SL[
43‐
45], and in our model, severity of worst pain in the preceding year increased the odds of NP-SL by 59% per unit increase in pain rating. Age and gender have also been significantly associated with NP-SL[
45,
46], although this study is the first to demonstrate significant effect modifications with general physical and mental health scores. This may partially explain some of the equivocal findings reported in earlier studies[
46].
We found that fear of movement increased the odds of NP-SL in the preceding year by 6% per unit increase in TSK-11 score, suggesting that even after controlling for pain severity, nurses and midwives with NP who are fearful of movement are more likely to stay home from work. This is an exciting finding given that fear of movement has shown some potential for modification in an intervention study with individuals following back injury[
47]. Further, the current finding is consistent with evidence from other studies that demonstrate fear of movement is related to sick leave due to low back pain (LBP-SL)[
16,
17]. In a previous analysis of LBP-SL in nurses and midwives, fear of movement increased the likelihood of LBP-SL by 5% for women and 8% for men[
16]. Hence, the strength of association in this study is consistent with previous analyses for LBP-SL. In terms of Hill’s criteria for causation[
48], there is mounting evidence for a causal relationship between fear of movement and sick leave due to spinal pain: the temporal relationship[
17], strength and consistency of association in this and others studies[
16,
17], and plausibility of the relationship[
15]. However, before causation can be asserted, all of Hill’s criteria need to be satisfied, including the yet to be established dose–response relationship between fear of movement and sick leave due to spinal pain, demonstrated prevention or amelioration by appropriate experimental regimen, and the establishment of coherency and adequate specificity.
Passive coping also increased the likelihood of NP-SL, by 8% per unit increase in score (on a 24-point scale). This finding adds weight to the importance of passive coping in musculoskeletal pain outcomes. Mercado and colleagues[
49] demonstrated that individuals using moderate to high levels of passive coping strategies were five times more likely to develop disabling neck and/or low back pain than those with low levels. Passive coping has also been shown to increase the likelihood of LBP-SL by 7% per unit increase in score[
16].
The significant interaction terms are illuminating. The first reveals that as age and general physical health scores together increase, the odds of NP-SL decrease less than if age and general physical health scores were considered separately as independent effects. Similarly, as age and general physical health scores together decrease, then the odds of NP-SL increase less than if considered separately. So, in workforce planning, both variables should be considered together rather than in isolation. The second interaction term reveals that the general mental health score association with NP-SL is primarily associated with males; and the lower the general mental health score a male has, the higher his odds of NP-SL. While significant here, interaction terms are rarely investigated.
Our analysis identified no direct relationship between pain catastrophizing and NP-SL. Our
a priori hypothesis that pain catastrophising would be associated with NP-SL was based on fear-avoidance theory[
14,
15] which asserts pain catastrophizing leads to fear of movement and avoidant behaviours. While significant in the bivariable model, NP-SL was primarily confounded by passive coping in the multivariable model. This finding, and a similar non-significant relationship between pain catastrophising and LBP-SL[
16], suggests that pain catastrophizing may be related to proximal factors in the fear-avoidance model but not directly related to work absence. Another rejected
a priori hypothesis was that of an association between active coping and NP-SL. We found active coping had no relationship with NP-SL in either bivariable or multivariable analyses. A lack of association has also been demonstrated between active coping and NP-related disability[
16,
49]. According to fear-avoidance theory, active coping responses should represent confrontational behaviours that lead to recovery[
14,
15]. Given that flaws in the measurement of active coping have been proposed[
49], further work is needed to establish valid and reliable measurement of active coping behaviours to facilitate further investigations into the possible protective influence of active coping on NP-SL.
Self-reported psychosocial work exposure such as job strain, low co-worker support, decreased job security and overall stress at work have also been shown to be risk factors for NP[
45,
46]. While many considered occupational and social variables had significant bivariable associations with NP-SL in this study, none appeared in the final multivariable model. This implies, for our study group, that demographic, general health, pain characteristics, and psychosocial factors mediated these occupational and social variables in explaining NP-SL. The relatively homogeneous and structured occupational and social characteristics around nursing and midwifery may hide the small but significant associations seen elsewhere[
46].
An urgent call has been made for high quality randomised controlled trials of workplace interventions for neck pain[
45]. Our findings advocate for multidimensional preventive interventions that incorporate strategies to ameliorate both fear of movement and passive coping behaviours. Fortunately, a coping-oriented cognitive and behavioural intervention developed by Linton and colleagues[
50,
51], is clearly defined and could readily be applied in future trials in nurses and midwives. However, that intervention did not reduce fear of movement[
50,
51]. Program strategies that target fear of movement, such as those included in the Pain-Disability Prevention Program[
47], could be combined with the coping-oriented program in the hope of additive effects on NP-SL. Optimized pain management should be also considered in multidimensional NP-SL preventive interventions since pain severity is related to NP-SL and has also been shown to predict future fear of movement[
52]. Given that pain severity, fear of movement and passive coping are related to both NP-SL (as describe here) and sick leave due to low back pain[
16], a multidimensional program to address these factors is likely to have positive impacts on work loss due to both neck and low back pain.
This study has a number of strengths but also limitations. This is the first investigation of pain-related psychological factors and NP-SL and provides new insights into exposure relationships. Pain coping has been considered as a confounder in an analysis of sick leave due to a composite outcome of neck or upper extremity pain[
12], but the main effect of pain-related psychological characteristics has never before been explored. There are three important limitations to consider: (i) the cross-sectional design precludes causal inferences; (ii) all NMeS data were self-reported and do not include objective measures; and, (iii) the NMeS sample represents less than 5% of the nursing and midwifery population that investigators attempted to invite[
21,
22].
Only with the following of NMeS participants over time, together with the acquisition of empirical information gleaned from other studies, will causal inferences able to be made. Self-report studies have validity problems; participants may exaggerate conditions or events in order to make their situation seem worse or through social desirability bias they might under-report conditions or events in order to conceal or minimize stigmatised matters. Participants may also simply be mistaken or misremember the material covered by the survey. However, our deliberate choice of standardised instruments sought to minimise this inherent effect.
The modest participation rate potentially threatens the external validity of the data, although the associated impact of differential participation in large-scale, multiple-domain, targeted population studies is likely to be small[
22]. Selective participation in relation to NP is unlikely because potential participants were informed in NMeS promotional material about broad research objectives (i.e. to study workforce and health outcomes) that made no reference to NP. Moreover, in relation to basic demographic characteristics and NP prevalence, there is no obvious responder bias[
21,
22]. In this analysis, 50.6% of nurses and midwives who met inclusion criteria reported NP in the previous year. This is reassuringly consistent with a sample of New Zealand nurses with similar demographic characteristics who reported 52% prevalence using the same measurement instrument[
53]. Further, in our sample 18.5% of nurses with NP reported NP-SL in the preceding year, compared to 21.3% of individuals in a large general population sample that reported neck, shoulder or upper back pain[
54].
The overall NMeS registrants have been shown to be similar to the source Australian and New Zealand populations in relation to gender, age and Indigenous representation[
21,
22]. This similarity is notable as it might have been opined that older participants would have reduced access to, and have been less comfortable with, a fully electronic survey. However, the use of information technology is now considered a core aspect of modern practice and is a basic element in nursing and midwifery programmes[
20]. Furthermore, Internet access at home is becoming commonplace. In 2008, 75% of Australian households had a computer and 67% had home Internet access, of which 78% was broadband[
20]. Internet penetration is likely higher in our target populations as rates increase markedly with higher incomes. In respect to the sample of nurses and midwives included in this analysis, participants’ demographic characteristics (92.9% female and mean 43.9 years) were consistent with the Australian nursing and midwifery labour force at the time of recruitment (90.4% female and mean 43.7 years)[
55]. Slight differences may reflect demographic associations with NP prevalence, since NP appears to differentially affect women (females report NP more than men in 83% of prevalence studies)[
2].
Competing interests
The authors declare that they have no competing interests to declare.
Authors’ contributions
PJS and APD conceived the idea for the paper. PJS performed the statistical analyses. PJS, APD and CT jointly drafted the manuscript with the main part of the introduction, methods and discussion written by APD and the main part of the results section drafted by PJS. All authors interpreted the data, reviewed iterations of the manuscript and approved the final version.