Skip to main content
Erschienen in:

01.08.2024 | Themenschwerpunkt

Detailing the biomedical aspects of geroscience by molecular data and large-scale “deep” bioinformatics analyses

verfasst von: Andreas Simm, Anne Großkopf, Georg Fuellen

Erschienen in: Zeitschrift für Gerontologie und Geriatrie | Ausgabe 5/2024

Einloggen, um Zugang zu erhalten

Abstract

As scientists investigated the molecular mechanisms of the biology of aging, they discovered that these are malleable and can enhance healthy longevity by intervening in the drivers of aging, which are leading to disease, dysfunction and death. These exciting observations gave birth to the field of geroscience. As the mechanisms of aging affect almost all mechanisms of life, detailed molecular mechanistic knowledge must be gained or expanded by considering and integrating as many types of data as possible, from genes and transcripts to socioenvironmental factors. Such a large-scale integration of large amounts of data will in turn profit from “deep” bioinformatics analyses that provide insights beyond contextualizing and interpreting the data in the light of knowledge from databases such as the Gene Ontology. The authors suggest that “deep” bioinformatics, employing methods based on artificial intelligence, will be a key ingredient of future analyses.
Literatur
1.
Zurück zum Zitat Behr LC, Simm A, Kluttig A, Grosskopf Grosskopf A (2023) 60 years of healthy aging: On definitions, biomarkers, scores and challenges. Ageing Res Rev 88:101934CrossRefPubMed Behr LC, Simm A, Kluttig A, Grosskopf Grosskopf A (2023) 60 years of healthy aging: On definitions, biomarkers, scores and challenges. Ageing Res Rev 88:101934CrossRefPubMed
2.
Zurück zum Zitat Cohen AA, Kennedy BK, Anglas U, Bronikowski AM, Deelen J, Dufour F, Ferbeyre G, Ferrucci L, Franceschi C, Frasca D, Friguet B, Gaudreau P, Gladyshev VN et al (2020) Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev 191:111316CrossRefPubMedPubMedCentral Cohen AA, Kennedy BK, Anglas U, Bronikowski AM, Deelen J, Dufour F, Ferbeyre G, Ferrucci L, Franceschi C, Frasca D, Friguet B, Gaudreau P, Gladyshev VN et al (2020) Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev 191:111316CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Fuellen G, Jansen L, Cohen AA, Luyten W, Gogol M, Simm A, Saul N, Cirulli F, Berry A, Antal P, Kohling R, Wouters B, Health Aging MS (2019) Unifying Concepts, Scores, Biomarkers and Pathways. Aging Dis 10:883–900CrossRefPubMedPubMedCentral Fuellen G, Jansen L, Cohen AA, Luyten W, Gogol M, Simm A, Saul N, Cirulli F, Berry A, Antal P, Kohling R, Wouters B, Health Aging MS (2019) Unifying Concepts, Scores, Biomarkers and Pathways. Aging Dis 10:883–900CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2023) Hallmarks of aging: An expanding universe. Cell 186:243–278CrossRefPubMed Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2023) Hallmarks of aging: An expanding universe. Cell 186:243–278CrossRefPubMed
6.
Zurück zum Zitat Lin J, Epel E (2022) Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev 73:101507CrossRefPubMed Lin J, Epel E (2022) Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev 73:101507CrossRefPubMed
7.
Zurück zum Zitat Simm A, Nass N, Bartling B, Hofmann B, Silber RE, Navarrete SA (2008) Potential biomarkers of ageing. Biol Chem 389:257–265CrossRefPubMed Simm A, Nass N, Bartling B, Hofmann B, Silber RE, Navarrete SA (2008) Potential biomarkers of ageing. Biol Chem 389:257–265CrossRefPubMed
8.
Zurück zum Zitat Hofmann B, Gerull KA, Bloch K, Riemer M, Erbs C, Frohlich A, Richter S, Ehrhardt M, Zitterbart C, Bartel FF, Siegel P, Wienke A, Silber RE et al (2020) It’s all in our skin-Skin autofluorescence‑A promising outcome predictor in cardiac surgery: A single centre cohort study. PLoS ONE 15:e234847CrossRefPubMedPubMedCentral Hofmann B, Gerull KA, Bloch K, Riemer M, Erbs C, Frohlich A, Richter S, Ehrhardt M, Zitterbart C, Bartel FF, Siegel P, Wienke A, Silber RE et al (2020) It’s all in our skin-Skin autofluorescence‑A promising outcome predictor in cardiac surgery: A single centre cohort study. PLoS ONE 15:e234847CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Assimes TL, Ferrucci L et al (2019) DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 11:303–327CrossRefPubMed Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Assimes TL, Ferrucci L et al (2019) DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 11:303–327CrossRefPubMed
10.
Zurück zum Zitat Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, Holtz A, Shah S, Sharma V, Ferrucci L, Campisi J, Schilling B (2020) A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol 18:e3000599CrossRefPubMedPubMedCentral Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, Holtz A, Shah S, Sharma V, Ferrucci L, Campisi J, Schilling B (2020) A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol 18:e3000599CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Schafer MJ, Zhang X, Kumar A, Atkinson EJ, Zhu Y, Jachim S, Mazula DL, Brown AK, Berning M, Aversa Z, Kotajarvi B, Bruce CJ, Greason KL et al (2020) The senescence-associated secretome as an indicator of age and medical risk. JCI Insight 5:e133668CrossRefPubMedPubMedCentral Schafer MJ, Zhang X, Kumar A, Atkinson EJ, Zhu Y, Jachim S, Mazula DL, Brown AK, Berning M, Aversa Z, Kotajarvi B, Bruce CJ, Greason KL et al (2020) The senescence-associated secretome as an indicator of age and medical risk. JCI Insight 5:e133668CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Uyar B, Palmer D, Kowald A, Murua Escobar H, Barrantes I, Moller S, Akalin A, Fuellen G (2020) Single-cell analyses of aging, inflammation and senescence. Ageing Res Rev 64:101156CrossRefPubMedPubMedCentral Uyar B, Palmer D, Kowald A, Murua Escobar H, Barrantes I, Moller S, Akalin A, Fuellen G (2020) Single-cell analyses of aging, inflammation and senescence. Ageing Res Rev 64:101156CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Nie C, Li Y, Li R, Yan Y, Zhang D, Li T, Li Z, Sun Y, Zhen H, Ding J, Wan Z, Gong J, Shi Y et al (2022) Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep 38:110459CrossRefPubMed Nie C, Li Y, Li R, Yan Y, Zhang D, Li T, Li Z, Sun Y, Zhen H, Ding J, Wan Z, Gong J, Shi Y et al (2022) Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep 38:110459CrossRefPubMed
14.
Zurück zum Zitat Nguyen H, Tran D, Galazka JM, Costes SV, Beheshti A, Petereit J, Draghici S, Nguyen TCPA (2021) a web-based platform for consensus pathway analysis and interactive visualization. Nucleic Acids Res 49:W114–W24CrossRefPubMedPubMedCentral Nguyen H, Tran D, Galazka JM, Costes SV, Beheshti A, Petereit J, Draghici S, Nguyen TCPA (2021) a web-based platform for consensus pathway analysis and interactive visualization. Nucleic Acids Res 49:W114–W24CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Kalyakulina A, Yusipov I, Moskalev A, Franceschi C, Ivanchenko M (2024) eXplainable Artificial Intelligence (XAI) in aging clock models. Ageing Res Rev 93:102144CrossRefPubMed Kalyakulina A, Yusipov I, Moskalev A, Franceschi C, Ivanchenko M (2024) eXplainable Artificial Intelligence (XAI) in aging clock models. Ageing Res Rev 93:102144CrossRefPubMed
16.
Zurück zum Zitat Geng C, Wang Z, Tang Y (2024) Machine learning in Alzheimer’s disease drug discovery and target identification. Ageing Res Rev 93:102172CrossRefPubMed Geng C, Wang Z, Tang Y (2024) Machine learning in Alzheimer’s disease drug discovery and target identification. Ageing Res Rev 93:102172CrossRefPubMed
17.
Zurück zum Zitat Cipriano A, Moqri M, Maybury-Lewis SY, Rogers-Hammond R, de Jong TA, Parker A, Rasouli S, Scholer HR, Sinclair DA, Sebastiano V (2024) Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. Nat Aging 4:14–26CrossRefPubMed Cipriano A, Moqri M, Maybury-Lewis SY, Rogers-Hammond R, de Jong TA, Parker A, Rasouli S, Scholer HR, Sinclair DA, Sebastiano V (2024) Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. Nat Aging 4:14–26CrossRefPubMed
18.
Zurück zum Zitat Chen J, Dong H, Hastings J, Jiménez-Ruiz E, López V, Monnin P, Pesquita C, Škoda P, Tamma V. Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities. ArXiv. 2023: arXiv:2309.17255 Chen J, Dong H, Hastings J, Jiménez-Ruiz E, López V, Monnin P, Pesquita C, Škoda P, Tamma V. Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities. ArXiv. 2023: arXiv:2309.17255
19.
Zurück zum Zitat He Y, Chen J, Jiménez-Ruiz E, Dong H, Horrocks I. Language Model Analysis for Ontology Subsumption Inference. ArXiv. 2023; arXiv:2302.06761. He Y, Chen J, Jiménez-Ruiz E, Dong H, Horrocks I. Language Model Analysis for Ontology Subsumption Inference. ArXiv. 2023; arXiv:2302.06761.
20.
Zurück zum Zitat Meng Z, Liu F, Clark TH, Shareghi E, Collier N. Mixture-of-Partitions: Infusing Large Biomedical Knowledge Graphs into BERT. ArXiv. 2021; arXiv:2109.04810. Meng Z, Liu F, Clark TH, Shareghi E, Collier N. Mixture-of-Partitions: Infusing Large Biomedical Knowledge Graphs into BERT. ArXiv. 2021; arXiv:2109.04810.
21.
Zurück zum Zitat d’Amato C, Mahon L, Monnin P, Stamou G (2023) Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges. Trans Graph Data Knowledge 1: 8:1–8:35 d’Amato C, Mahon L, Monnin P, Stamou G (2023) Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges. Trans Graph Data Knowledge 1: 8:1–8:35
23.
Zurück zum Zitat Balabin H, Hoyt CT, Birkenbihl C, Gyori BM, Bachman J, Kodamullil AT, Ploger PG, Hofmann-Apitius M, STon Ks D‑FD (2022) a sophisticated transformer trained on biomedical text and knowledge graphs. Bioinformatics 38:1648–1656CrossRefPubMedPubMedCentral Balabin H, Hoyt CT, Birkenbihl C, Gyori BM, Bachman J, Kodamullil AT, Ploger PG, Hofmann-Apitius M, STon Ks D‑FD (2022) a sophisticated transformer trained on biomedical text and knowledge graphs. Bioinformatics 38:1648–1656CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Wang X, Gao T, Zhu Z, Zhang Z, Liu Z, Li J, Tang J. KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation. ArXiv. 2019; arXiv:1911.06136. Wang X, Gao T, Zhu Z, Zhang Z, Liu Z, Li J, Tang J. KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation. ArXiv. 2019; arXiv:1911.06136.
25.
Zurück zum Zitat Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, Hill MC, Mantineo H, Brydon EM, Zeng Z, Liu XS, Ellinor PT (2023) Transfer learning enables predictions in network biology. Nature 618:616–624CrossRefPubMedPubMedCentral Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, Hill MC, Mantineo H, Brydon EM, Zeng Z, Liu XS, Ellinor PT (2023) Transfer learning enables predictions in network biology. Nature 618:616–624CrossRefPubMedPubMedCentral
Metadaten
Titel
Detailing the biomedical aspects of geroscience by molecular data and large-scale “deep” bioinformatics analyses
verfasst von
Andreas Simm
Anne Großkopf
Georg Fuellen
Publikationsdatum
01.08.2024
Verlag
Springer Medizin
Erschienen in
Zeitschrift für Gerontologie und Geriatrie / Ausgabe 5/2024
Print ISSN: 0948-6704
Elektronische ISSN: 1435-1269
DOI
https://doi.org/10.1007/s00391-024-02329-w