Background
Methods
Data sources
Indicator selection
Research methods
Dagum Gini coefficient measurement and decomposition
Convergence model
Results
Changes in nursing human resources in the Yangtze River Economic Belt
Particular year | Yangtze River Economic Belt in general | Upper reaches | Middle reaches | Lower reaches |
---|---|---|---|---|
2010 | 81.24 | 17.83 | 26.48 | 36.93 |
2011 | 85.99 | 20.56 | 26.61 | 38.82 |
2012 | 96.71 | 23.83 | 30.16 | 42.72 |
2013 | 108.22 | 27.22 | 33.20 | 47.80 |
2014 | 118.41 | 30.52 | 36.49 | 51.40 |
2015 | 128.99 | 33.66 | 39.31 | 56.02 |
2016 | 140.10 | 37.10 | 43.22 | 59.78 |
2017 | 152.91 | 41.13 | 46.01 | 65.77 |
2018 | 165.72 | 45.15 | 50.00 | 70.57 |
2019 | 181.32 | 49.51 | 55.83 | 75.98 |
2020 | 203.02 | 52.74 | 65.37 | 84.91 |
Average annual growth rate (%) | 9.60% | 11.45% | 9.46% | 8.68% |
Dagum Gini coefficient difference analysis of nursing human resources in the Yangtze River Economic Belt
Particular year | Total | Intra-regional variations | Interregional differences | Contribution (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Upper reaches | Lower reaches | Middle reaches | Upper reaches&Lower reaches | Upper reaches&Middle reaches | Lower reaches&Middle reaches | Regional | Intra-regional | Hypervariable density | ||
2010 | 0.409 | 0.491 | 0.337 | 0.367 | 0.472 | 0.466 | 0.365 | 31.54% | 16.80% | 51.66% |
2011 | 0.408 | 0.487 | 0.339 | 0.369 | 0.465 | 0.462 | 0.365 | 31.71% | 15.31% | 52.98% |
2012 | 0.401 | 0.475 | 0.337 | 0.365 | 0.454 | 0.450 | 0.363 | 31.76% | 14.00% | 54.23% |
2013 | 0.400 | 0.468 | 0.341 | 0.366 | 0.445 | 0.441 | 0.367 | 31.98% | 13.70% | 54.33% |
2014 | 0.413 | 0.465 | 0.379 | 0.372 | 0.455 | 0.438 | 0.388 | 32.38% | 9.99% | 57.62% |
2015 | 0.399 | 0.466 | 0.338 | 0.372 | 0.438 | 0.438 | 0.369 | 32.12% | 12.44% | 55.44% |
2016 | 0.402 | 0.472 | 0.344 | 0.369 | 0.442 | 0.439 | 0.372 | 32.06% | 13.17% | 54.78% |
2017 | 0.425 | 0.469 | 0.409 | 0.369 | 0.463 | 0.435 | 0.410 | 32.56% | 17.75% | 49.69% |
2018 | 0.401 | 0.472 | 0.344 | 0.368 | 0.436 | 0.436 | 0.373 | 32.11% | 14.10% | 53.80% |
2019 | 0.427 | 0.474 | 0.414 | 0.370 | 0.464 | 0.441 | 0.407 | 32.68% | 15.74% | 51.59% |
2020 | 0.422 | 0.475 | 0.393 | 0.368 | 0.460 | 0.439 | 0.404 | 32.32% | 20.59% | 47.09% |
Convergence analysis
σ convergence analysis
Provinces | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
Total | 0.791 | 0.773 | 0.748 | 0.720 | 0.749 | 0.717 | 0.723 | 0.712 | 0.726 | 0.744 | 0.733 |
Upper reaches | 1.448 | 1.440 | 1.416 | 1.3730 | 1.366 | 1.366 | 1.380 | 1.356 | 1.3690 | 1.373 | 1.366 |
Middle reaches | 0.961 | 0.782 | 0.769 | 0.7820 | 0.835 | 0.830 | 0.817 | 0.818 | 0.807 | 0.758 | 0.762 |
Lower reaches | 1.001 | 0.969 | 0.940 | 0.924 | 0.970 | 0.893 | 0.884 | 0.921 | 0.899 | 0.924 | 0.868 |
Sichuan | 1.389 | 1.389 | 1.351 | 1.330 | 1.312 | 1.306 | 1.347 | 1.327 | 1.329 | 1.365 | 1.368 |
Guizhou | 0.767 | 0.711 | 0.632 | 0.591 | 0.565 | 0.552 | 0.535 | 0.524 | 0.523 | 0.511 | 0.503 |
Chongqing | 0.339 | 0.332 | 0.331 | 0.315 | 0.314 | 0.271 | 0.268 | 0.224 | 0.217 | 0.129 | 0.124 |
Jiangxi | 0.571 | 0.552 | 0.565 | 0.558 | 0.569 | 0.573 | 0.573 | 0.595 | 0.608 | 0.615 | 0.630 |
Hunan | 0.665 | 0.672 | 0.655 | 0.661 | 0.669 | 0.647 | 0.632 | 0.620 | 0.615 | 0.521 | 0.570 |
Hubei | 0.915 | 0.928 | 0.916 | 0.935 | 1.004 | 1.006 | 0.999 | 1.020 | 1.001 | 1.011 | 0.991 |
Jiangsu | 0.683 | 0.712 | 0.624 | 0.450 | 0.631 | 0.441 | 0.458 | 0.417 | 0.451 | 0.585 | 0.499 |
Anhui | 0.723 | 0.614 | 0.624 | 0.619 | 0.624 | 0.624 | 0.655 | 0.596 | 0.686 | 0.732 | 0.684 |
Shanghai | 0.201 | 0.201 | 0.202 | 0.196 | 0.186 | 0.174 | 0.169 | 0.154 | 0.089 | 0.036 | 0.021 |
Zhejiang | 0.615 | 0.604 | 0.620 | 0.613 | 0.620 | 0.589 | 0.586 | 0.599 | 0.598 | 0.612 | 0.620 |
Absolute β-convergence
Synthesis | Upper reaches | Middle reaches | Lower reaches | |||||
---|---|---|---|---|---|---|---|---|
OLS | SDM | OLS | SDM | OLS | SDM | OLS | SDM | |
β | 0.0701*** | 0.0704*** | 0.094*** | 0.052*** | 0.057*** | 0.057*** | 0.051*** | 0.050*** |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | |
Ρ | -0.292 | 0.172*** | -0.120* | -0.153 | ||||
(0.51) | (0.00) | (0.08) | (0.83) | |||||
Rate of convergence (%) | 0.007 | 0.111 | 0.009 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |
R2 | 0.246 | 0.334 | 0.423 | 0.496 | ||||
observed value | 290 | 80 | 100 | 110 |
Conditional β-convergence
Synthesis | Upper reaches | Middle reaches | Lower reaches | |||||
---|---|---|---|---|---|---|---|---|
OLS | SDM | OLS | SDM | OLS | SDM | OLS | SDM | |
β | -0.423*** | -2.971*** | 0.049*** | 0.104 | 0.001 | -2.674*** | -1.313*** | -1.100*** |
(0.00) | (0.00) | (0.00) | (0.33) | (0.95) | (0.00) | (0.00) | (0.00) | |
Gross regional product/million yuan | 4.91 | 0.00003*** | -3.97 | 1.25 | 2.452 | 0.00005*** | 2.267 | 0.00014*** |
(0.06) | (0.00) | (0.814) | (0.42) | (0.73) | (0.00) | (0.81) | (0.00) | |
Average wage of employees/¥ | 0.003 | 0.130 | -0.008*** | -0.180** | -0.006 | -0.142 | 0.019* | 0.049* |
(0.393) | (0.153) | (0.00) | (0.002) | (0.09) | (0.12) | (0.02) | (0.03) | |
Number of beds in hospitals, health centers/beds | 0.583*** | 0.124*** | 0.268*** | 0.022** | 0.371*** | 0.286* | 0.102*** | 0.347*** |
(0.00) | (0.00) | (0.00) | (0.003) | (0.00) | (0.04) | (0.00) | (0.00) | |
Expenditure on education level | 1186.002 | 978.634 | 1909.041 | 1189.61 | 728.02 | -8241.08* | -300.400 | -1467.014 |
(0.466) | (0.74) | (0.06) | (0.37) | (0.14) | (0.02) | (0.94) | (0.82) | |
ρ | -0.251 | 0.219** | -0.166* | -0.081 | ||||
0.57 | 0.009 | 0.016 | 0.25 | |||||
R2 | 0.468 | 0.435 | 0.234 | 0.523 | ||||
observed value | 290 | 80 | 100 | 110 | ||||
Rate of convergence (%) | -0.032 | -0.125 | 0.005 | 0.010 | 0.000 | -0.118 | -0.076 | -0.067 |